51 research outputs found

    The Structure of Liquid and Amorphous Hafnia.

    Get PDF
    Understanding the atomic structure of amorphous solids is important in predicting and tuning their macroscopic behavior. Here, we use a combination of high-energy X-ray diffraction, neutron diffraction, and molecular dynamics simulations to benchmark the atomic interactions in the high temperature stable liquid and low-density amorphous solid states of hafnia. The diffraction results reveal an average Hf-O coordination number of ~7 exists in both the liquid and amorphous nanoparticle forms studied. The measured pair distribution functions are compared to those generated from several simulation models in the literature. We have also performed ab initio and classical molecular dynamics simulations that show density has a strong effect on the polyhedral connectivity. The liquid shows a broad distribution of Hf-Hf interactions, while the formation of low-density amorphous nanoclusters can reproduce the sharp split peak in the Hf-Hf partial pair distribution function observed in experiment. The agglomeration of amorphous nanoparticles condensed from the gas phase is associated with the formation of both edge-sharing and corner-sharing HfO6,7 polyhedra resembling that observed in the monoclinic phase

    Nematic Fluctuations in Iron-Oxychalcogenide Mott Insulators

    Get PDF
    Nematic fluctuations occur in a wide range of physical systems from liquid crystals to biological molecules to solids such as exotic magnets, cuprates and iron-based high-TcT_c superconductors. Nematic fluctuations are thought to be closely linked to the formation of Cooper-pairs in iron-based superconductors. It is unclear whether the anisotropy inherent in this nematicity arises from electronic spin or orbital degrees of freedom. We have studied the iron-based Mott insulators La2_{2}O2_{2}Fe2_{2}OMM2_{2} MM = (S, Se) which are structurally similar to the iron pnictide superconductors. They are also in close electronic phase diagram proximity to the iron pnictides. Nuclear magnetic resonance (NMR) revealed a critical slowing down of nematic fluctuations as observed by the spin-lattice relaxation rate (1/T11/T_1). This is complemented by the observation of a change of electrical field gradient over a similar temperature range using M\"ossbauer spectroscopy. The neutron pair distribution function technique applied to the nuclear structure reveals the presence of local nematic C2C_2 fluctuations over a wide temperature range while neutron diffraction indicates that global C4C_{4} symmetry is preserved. Theoretical modeling of a geometrically frustrated spin-11 Heisenberg model with biquadratic and single-ion anisotropic terms provides the interpretation of magnetic fluctuations in terms of hidden quadrupolar spin fluctuations. Nematicity is closely linked to geometrically frustrated magnetism, which emerges from orbital selectivity. The results highlight orbital order and spin fluctuations in the emergence of nematicity in Fe-based oxychalcogenides. The detection of nematic fluctuation within these Mott insulator expands the group of iron-based materials that show short-range symmetry-breaking

    Understanding the re-entrant phase transition in a non-magnetic scheelite

    Get PDF
    The stereochemical activity of lone pair electrons plays a central role in determining the structural and electronic properties of both chemically simple materials such as H2O, as well as more complex condensed phases such as photocatalysts or thermoelectrics. TlReO4 is a rare example of a non-magnetic material exhibiting a re-entrant phase transition and emphanitic behavior in the long-range structure. Here, we describe the role of the Tl+ 6s2 lone pair electrons in these unusual phase transitions and illustrate its tunability by chemical doping, which has broad implications for functional materials containing lone pair bearing cations. First-principles density functional calculations clearly show the contribution of the Tl+ 6s2 in the valence band region. Local structure analysis, via neutron total scattering, revealed that changes in the long-range structure of TlReO4 occur due to changes in the correlation length of the Tl+ lone pairs. This has a significant effect on the anion interactions, with long-range ordered lone pairs creating a more densely packed structure. This resulted in a trade-off between anionic repulsions and lone pair correlations that lead to symmetry lowering upon heating in the long-range structure, whereby lattice expansion was necessary for the Tl+ lone pairs to become highly correlated. Similarly, introducing lattice expansion through chemical pressure allowed long-range lone pair correlations to occur over a wider temperature range, demonstrating a method for tuning the energy landscape of lone pair containing functional materials

    Event-based processing of neutron scattering data at the Spallation Neutron Source

    Get PDF
    The Spallation Neutron Source at Oak Ridge National Laboratory, USA, ushered in a new era of neutron scattering experiments through the use of event-based data. Tagging each neutron event allows pump–probe experiments, measurements with a parameter asynchronous to the source, measurements with continuously varying parameters and novel ways of testing instrument components. This contribution will focus on a few examples. A pulsed magnet has been used to study diffraction under extreme fields. Continuous ramping of temperature is becoming standard on the POWGEN diffractometer. Battery degradation and phase transformations under heat and stress are often studied on the VULCAN diffractometer. Supercooled Al2O3 was studied on NOMAD. A study of a metallic glass through its glass transition was performed on the ARCS spectrometer, and the effect of source variation on chopper stability was studied for the SEQUOIA spectrometer. Besides a summary of these examples, an overview is provided of the hardware and software advances to enable these and many other event-based measurements

    Event-based processing of neutron scattering data at the Spallation Neutron Source

    Get PDF
    The Spallation Neutron Source at Oak Ridge National Laboratory, USA, ushered in a new era of neutron scattering experiments through the use of event-based data. Tagging each neutron event allows pump–probe experiments, measurements with a parameter asynchronous to the source, measurements with continuously varying parameters and novel ways of testing instrument components. This contribution will focus on a few examples. A pulsed magnet has been used to study diffraction under extreme fields. Continuous ramping of temperature is becoming standard on the POWGEN diffractometer. Battery degradation and phase transformations under heat and stress are often studied on the VULCAN diffractometer. Supercooled Al2O3 was studied on NOMAD. A study of a metallic glass through its glass transition was performed on the ARCS spectrometer, and the effect of source variation on chopper stability was studied for the SEQUOIA spectrometer. Besides a summary of these examples, an overview is provided of the hardware and software advances to enable these and many other event-based measurements

    Average and Local Crystal Structures of (Ga1-xZnx)(N1-xOx) Solid Solution Nanoparticles

    No full text
    We report a comprehensive study of the crystal structure of (Ga1-xZnx)(Ni1-xOx) solid solution nanopartides by means of neutron and synchrotron X-ray scattering. In our study, we used four different types of (Ga1-xZnx)(Ni1-xOx) nanopartides, with diameters of 10-27 nm and x = 0.075-0.51, which show energy band gaps from 2.21 to 2.61 eV. Rietveld analysis of the neutron diffraction data revealed that the average crystal structure is hexagonal wurtzite (space group P6(3)mc) for the larger nanopartides, while the crystal structure of smaller nanoparticles is disordered hexagonal. Pair-distribution-function analysis found that the intermediate crystal structure retains a "motif" of the average one; however, the local structure is more disordered. The implications of disorder on the reduced energy band gap are discussed

    Nanostructured Na 2 Ti 9 O 19 for Hybrid Sodium-Ion Capacitors with Excellent Rate Capability

    No full text
    Herein, we report a new Na-insertion electrode material, Na2Ti9O19, as a potential candidate for Na-ion hybrid capacitors. We study the structural properties of nanostructured Na2Ti9O19, synthesized by a hydrothermal technique, upon electrochemical cycling vs Na. Average and local structures of Na2Ti9O19 are elucidated from neutron Rietveld refinement and pair distribution function (PDF), respectively, to investigate the initial discharge and charge events. Rietveld refinement reveals electrochemical cycling of Na2Ti9O19 is driven by single-phase solid solution reaction during (de)sodiation without any major structural deterioration, keeping the average structure intact. Unit cell volume and lattice evolution on discharge process is inherently related to TiO6 distortion and Na ion perturbations, while the PDF reveals the deviation in the local structure after sodiation. Raman spectroscopy and X-ray photoelectron spectroscopy studies further corroborate the average and local structural behavior derived from neutron diffraction measurements. Also, Na2Ti9O19 shows excellent Na-ion kinetics with a capacitve nature of 86% at 1.0 mV s–1, indicating that the material is a good anode candidate for a sodium-ion hybrid capacitor. A full cell hybrid Na-ion capacitor is fabricated by using Na2Ti9O19 as anode and activated porous carbon as cathode, which exhibits excellent electrochemical properties, with a maximum energy density of 54 Wh kg–1 and a maximum power density of 5 kW kg–1. Both structural insights and electrochemical investigation suggest that Na2Ti9O19 is a promising negative electrode for sodium-ion batteries and hybrid capacitors
    • 

    corecore